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SUMMARY: On heating the furan endoperoxide (2) rearranges into the enol 
ester (4) and the bicyclic ozonide (3) affords instead the rearranged 
ozonide%(7]. The process (2) -+ (4) rzpresents an intramolecular Baeyer- 
Villiger ?earrangement pre&mabl$ via the dioxirane (D-2], while the 
process (2) -+ (x] represents intramolecular trapping of the carbonyl oxide 
(C-3). 

In the accompanying communication' we pointed out that a differen- 

tiation between the carbonyl oxide (C) and dloxirane (D) intermediates, 

which were proposed as the oxygen atom transfering species in the epoxi- 

dation of olefins and oxidation of sulfides and aldehydes and ketones by 

furan endoperoxides and bicyclic ozonides2, must engage intramolecular 

trapping experiments as mechanistic probes. For example, Criegee3 demon- 

strated that carbonyl oxides can be efficiently trapped intramolecularly 

by flanking keto groups to give bicyclic ozonides. Yet, dioxirane inter- 

mediates rearrange to give the so-called "anamolous ozonolysis" product via 

intramolecular Baeyer-Villager rearrangement. 3a We conducted such an intra- 

molecular trapping experiment by preparing the furan endoperoxide (2) and 

blcyclic ozonide (?), containing flanking keto groups as internal trapping 

agents. Our results are presented in Scheme I. 

Photooxygenation of a 0.1 E solution of 2,5-di(3-oxobutyl)-furan (1)4 

in CHC13 at O°C afforded the endoperoxide (z]. Spectral data: 'H NMR (C&13] 

G(ppm]: 2.20 (6H, s, CH3], 2.40-2.80 (8H, m, side chain CH2 groups] and 

6.20 (2H, S, -CH=CH-]; IR (CHC13)v(cm-' 1 3020 (olefinic CH), 2980-2900 

(aliphatic CH], 1720 (C=O) and 1660 (C=C). On warm-up of the endoperoxide 

solution in CHC13 to ca. 30°C (z) was completely consumed within 8 h in 

the dark, affording the Baeyer-Villiger product ($] (Scheme I). 
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Spectral data: 'H NMR (CDCl3)b(ppm) 2.20 (6H, s, CH3), 2.60-2.80 (8H, 

b.s., CH2), 5.40 (IH, d, J = 8 Hz, -CO-CH=) and 7.50 (IH, d, J = 8Hz 6 0-CH=); 

IR (CHC13)v(cm-') 3O;O (olefinic CH), 2960 (aliphatic CH), 1780 (-O-C-), 

1720 (-CO-), 1680 (-C-C=C-), and 1650 (C=C). Furthermore, catalytic hydro- 

genation (Pd-C in AcOEt) gave 2,5-dioxoheptyl levulinate (2). Spectral data: 

'H NMR (CDC13)g(ppm) 2.05 (6H, s, CH3), 2.50-2.70 (IOH, b.s., CH2) and 4.10- 

4.30 (2H, t, J = 6 Hz, -CH2-0-); IR (CC14)v(cm-I) 2995-2920 (aliphatic CH), 

1750 (-C02-) and 1725 (-CO-). Hydrolysis of (2) gave levulinic acid. 

Diimide reduction of endoperoxide (z) in CH2C12 at ca. -5OOC and sub- 

sequent silica gel chromatography at ca. -2OOC afforded ozonide (3) in 69% 

yield, 96% pure by iodometry. Spectral data: 'H NMR (CDC13)E(ppm)%l.70-2.60 

(12H, m, CH2) and 2.00 (6H, s, CH3); 13C NMR (CDC13)& (ppm) 22.3 (t, ring CH2), 

29.6 is, ‘X3) r 36.7 (t, CH2-C=O), 53.3 (t, bridgehead CH2), 111.5 (s, bridge- 

head) and 296.8 (s, C=O); IR (CC14)u(cm -I) 3000 and 2960 (aliphatic CH), 

1725 (C=?!, 1425 (CH2), 1360 (CH3), 1170 (C-O). Catalytic reduction of ozo- 

nide(;l) gave quantitatively the 2,5,8,11-tetraoxododecane (8_), mp 90-92OC 

(lit.4 mp 95-96OC). 

On heating a CDC13 solution of ozonide (2) at 80°C for 2 h, 13C NMR 

monitoring showed that the carbon resonances of (2) diminished and new reso- 

nances appeared at 110.3, 111.6 and 207.2 ppm, along with the characteristic 

resonances of the tetraone (:) at 29.8 (CH3), 35.9, 36.1 and 36.9 (CH2C=O) 

and 207.1 and 207.8 (C=O) ppm. On extensive heating, the new resonances also 

disappeared, while those of the tetraone ($) increased. The thermolysis mix- 

ture was chromatographed on silica gel at ca. -20°C, eluting with CH2C12. 

The rearranged ozonide (z) was isolated in 32% yield (99% by iodometry). 

Spectral data: 'H NMR (CDC13)&(ppm) 1.60 (3H, s, bridgehead CH3), 1.90-2.40 

(4H, m, ring CH2), 2.10 (5H, s, CH3C=0 and bridgehead CH2) and 2.50-2.70 

(6H, broad s, -CH2C=O); IR (CCl4)u(cm -I) 3020, 2970 and 2920 (aliphatic CH); 

1730 (C=O) and 1370 (CH3). The I3 C resonances at 110.3 and 111.6 ppm are 

adscribed to the distinct bridgehead carbons. On catalytic hydrogenation (72) 

gave quantitatively tetraone ($). 

The clear-cut results of our investigation are that the furan endo- 

peroxide (z) leads to the "anomalous ozonide" product (4) via intramolecular 

Baeyer-Villiger rearrangement but no intramolecular tra;ping product (6), 

while the bicyclic ozonide (2) gives the intramolecular trapping product (2) 

but no intramolecular Baeyer-Vrlliger product. It is unlikely that the thermal 

transformations (2) + (2) and (2) + (2) are concerted rearrangements5 since 

with simpler model compounds we demonstrated that external carbonyl trapping 

agents led preferentially to oxygen transfer products, i.e. intermediates 

were intercepted in these reactions. 2 Also the ozonolysis of a,8-unsaturated 

carbonyl substrates provides evidence for carbonyl oxides as intermediates. 8 

Therefore, we suggest that both in the (2) + (3) and (2) + (2) transformations 

carbonyl oxides are involved, respectively (C-2) and (C-3). However, while 



carbonyl oxide (C-2) prefers to undergo intramolecular Baeyer-Villiger 

rearrangement into en01 ester ($1, presumably via dioxirane (D-2), car- 

bony1 oxide (C-3) prefers to become intramolecularly trapped in the form 

of ozonide (;I). The destabilizing nature of the enone moiety in carbonyl 

oxide (C-2) apparently promotes the cyclization into its dioxirane (D-2), 

which then subsequently rearranges into ($1. That alkenyl migration is 

prefered over alkyl migration is well documented in Baeyer-Villiger 

rearrangements. 7 We conclude that the energy barrier between the carbo- 

nyl oxide and dioxirane valence isomers is sufficiently low to allow ready 

interconversion. 9 / 
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